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Lecture 10

Corollary 1. Let z = r(cos θ + i sin θ). Then for any positive integer n,

zn = rn(cos nθ + i sinnθ).

Proof. For positive n it is easy to apply the De Moivre’s rule. Note that

z−1 =
z̄

zz̄
=

1
r
(cos θ − i sin θ) = r−1

(
cos(−θ) + i sin(−θ)

)
= r1(cos θ1 + i sin θ1),

where r1 = r−1 and θ1 = −θ. Then for positive integer n,

z−n = rn
1 (cos nθ1 + i sinnθ1) = r−n

(
cos(−nθ) + i sin(−nθ)

)
.

Definition 2. For any angle θ the complex number cos θ + i sin θ is denoted by eiθ, i.e.,

eiθ = cos θ + i sin θ.

Recall the trigonometric functions cos θ and sin θ are defined by

cos θ =
x

r
, sin θ =

y

r
.

where x2 + y2 = r2.

Theorem 3.
eiθ1eiθ2 = ei(θ1+θ2).

Example 1. Computer (−1 +
√

3i)20.

Let α = −1 + 2i. Then α = 2
(
cos 2π

3 + i sin 2π
3

)
. Thus

α20 = 220

(
cos

40π

3
+ i sin

40π

3

)
= 220

(
cos

4π

3
+ i sin

4π

3

)
= 219(−1−

√
3i).

Example 2. Deriving trigonometric formulas. Consider (cos θ + i sin θ)3 = cos 3θ + i sin 3θ. Let
a = cos θ, b = sin θ. Then

(a + bi)3 = (a2 − b2 + 2abi)(a + bi)
= (a2 − b2)a− 2ab2 + (2a2b + a2b− b3)i
= a3 − 3ab2 + (3a2b− b3)i.

1



Thus
cos 3θ = cos3 θ − 3 cos θ sin2 θ = 4 cos3 θ − 3 cos θ.

Similarly,
sin 3θ = 3 cos2 θ sin θ − sin3 θ = 3 sin θ − 4 sin3 θ.

Proposition 4. (a) If z = reiθ, then z̄ = re−iθ.
(b) Let z1 = r1e

iθ1 and z2 = r2e
iθ2. Then z1 = z2 if, and only if, r1 = r2 and θ1 = θ2 + 2kπ for

some k ∈ Z.

Proof. (a) is obvious. (b) If z1 = z2, then r1 = r2, and 1 = z1/z2 = ei(θ1−θ2). Hence θ1 − θ2 = 2kπ
for some k ∈ Z. The other part is obvious.

1 Roots of unity

Definition 5. For any positive integer n, let w = e
2π
n ; the nth roots of unity are the complex

numbers
1, w, w2, . . . , wn−1.

They are evenly distributed on the unit circle.

Example 3. For n = 2, 1,−1; for n = 4, 1, i,−1,−i; for n = 3,

1, e
2πi
3 , e

4πi
3 .

Theorem 6. For any nth root of unity w = e
2π
n

i with n ≥ 2,

1 + w + w2 + · · ·+ wn−1 = 0.

Proof. Since wn = 1 and 1− w 6= 0, then

(1− w)(1 + w + · · ·+ wn−1) = 1− wn = 0.

Hence 1 + w + · · ·+ wn−1 must be zero.
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2 Cubic Equations

The general cubic equation may be written as

x3 + ax2 + bx + c = 0. (1)

Let x = x − a
3 . Then x3 = (y − a/3)3 = y3 − ay2 + (a2/3)y − a3/27, y2 = x2 − (2a/3)y + a2/9.

Substitute x = y − a/3 into (1); the equation becomes the form

y3 + 3hy + k = 0. (2)

Let y = u + v. Then

y3 = u3 + v3 + 3u2v + 3uv2 = u3 + v3 + 3uv(u + v) = u3 + v3 + 3uvy.
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This means that the equation of the form y3−3uvy− (u3 +v3) = 0 readily has a solution y = u+v.
So we set

h = −uv, k = −(u3 + v3).

Since v = −h/u, then v3 = −h3/u3. Thus k = −(u3 − h3/u3) becomes

u6 + ku3 − h3 = 0,

which is a quadratic equation in u3. Then u3 as

u3 =
−k +

√
k2 + 4h3

2
.

Thus

v3 = −k − u3 =
−k −√k2 + 4h3

2
.

Therefore we obtain a solution

y = u + v =
3

√
−k +

√
k2 + 4h3

2
+

3

√
−k −√k2 + 4h3

2
.

There are three cubic roots for u3 = −k+
√

k2+4h3

2 and also three cubic roots for v3 = −k−√k2+4h3

2 .
So theoretically there are nine possible values to be the solutions; but there are only three solutions,
some of them are the same.

Let u be a cubic root of −k+
√

k2+4h3

2 , and let ω = e2πi/3. Then the other two cubic roots are
uω, uω2. Therefore the solutions for (2) are given by

u− h

u
, uω − hω2

u
, uω2 − hω

u
.

Example 4. Consider the equation
x3 − 3x + 2 = 0.

Since h = −1, k = 2, we have

u3 =
−k +

√
k2 + 4h3

2
= −1.

So we have u = −1, thus the three solutions are given by

u− h

u
= −2,

uω − hω2

u
= −ω − ω2 = 1− (1 + ω + ω2) = 1,

uω2 − hω

u
= −ω2 − ω = 1.

We may also solve the problem directly by the factorization (x− 1)(x− 1)(x + 2) = 0.

Example 5. Consider the equation
x3 − 6x− 6 = 0.

We have h = −2 and k = −6. Thus

u3 =
−k +

√
k2 + 4h3

2
= 4.
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So u = 3
√

4. Thus

x1 = u− h

u
= 41/3 + 2/41/3 = 22/3 + 21/3,

x2 = uω − hω2

u
= (21/3 + 22/3)ω + (2−1/3 + 2−2/3)−1ω2,

x3 = uω2 − hω

u
= (2−1/3 + 2−2/3)−1ω + (21/3 + 22/3)ω2.

3 Fundamental Theorem of Algebra

Theorem 7. Every polynomial equation of degree at leat 1 has a root in C.

Theorem 8. Every polynomial of degree n factories as a product of linear polynomials, and has
exactly n roots (counted with multiplicity) in C.

Proposition 9. Let α1, . . . , αn the roots of the equation

xn + an−1x
n−1 + · · ·+ a1x + a0 = 0.

Then
s1 = α1 + α2 + · · ·+ αn = −an−1

s2 =
∑

i<j

αiαj = an−2,

s3 =
∑

i<j<k

αiαjαk = an−3,

· · · ,

sn = α1α2 · · ·αn = (−1)na0.

Example 6. Find a cubic equation with roots 2 + i, 2− i, and 3.

s1 = α1 + α2 + α3 = 7,

s2 = α1α2 + α1α3 + α2α3 = 17,

s3 = α1α2α3 = 15.

(x− 3)(x2 − 4x + 5) = x3 − 7x2 + 17x− 15 = 0.

Example 7. Let α and β be roots of equation x2 − 5x + 9 = 0. Find a quadratic equation with
roots α2 and β2.

The quadratic equation is of the form

x2 − (α2 + β2)x + α2β2 = 0.

Since α + β = 5 and αβ = 9, we have 52 = (α + β)2 = α2 + β2 + 2αβ = α2 + β2 + 18. Then
α2 + β2 = 7, α2β2 = 81. Thus

x2 − 7x + 81 = 0.
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